f'(x)= lim_(h->0) (f(x+h) - f(x))/ h
f'(x)= lim_(h->0) ((x+h)^(1/3) - x^(1/3))/
h
(a-b)(a^2+ab+b^2)
(a^(2/3) + (ab)^(1/3) + b^(2/3))
b^(1/3)) = (a-b)/ (a^(2/3) + (ab)^(1/3) +
b^(2/3))
((x+h)^(2/3) + ((x+h)x)^(1/3) + x^(2/3))
lim_(h->0) f(x)= lim_(h->0) ((h/((x+h)^(2/3) + (x(x+h))^(1/3) +
x^(2/3)))/h)
lim_(h->0) (1/((x+h)^(2/3) + (x(x+h))^(1/3) +
x^(2/3)))
+ x^(2/3) + x^(2/3)) = 1/(3x^(2/3))
lim_(h-> 0) f(x) = 1/3 x^-(2/3)
1/3
x^-(2/3)
No comments:
Post a Comment