Use the formula which expresses fundamental identity of
trigonometry: (sin z)^2+(cos z)^2=1 and write
x^2-2xsinz-4cosz+5=x^2-2xsinz-4cosz+4+1=x^2-2xsinz-4cosz+4+(sin z)^2+(cos
x)^2
Use perfect squares to express (x^2-2xsinz+(sin
z)^2)+((cos z)^2-4cosz+4)=(x-sin z)^2+(cos z -2)^2.
Write
y^2-2ysinz-6cosz+10=y^2-2ysinz-6cosz+9+1=y^2-2ysinz-6cosz+9+(sin z)^2+(cos
z)^2
Use perfect squares to express (y^2-2ysinz+(sin
z)^2)+((cos z)^2-6cosz+9)=(y-sin z)^2+(cos z -3)^2.
Use the
results to express f(x,y,z).
f(x,y,z)=sqrt((x-sin
z)^2+(cos z -2)^2)+sqrt((y-sin z)^2+(cos z -3)^2).
Use
Minkowsky's
inequality:
sqrt(m^2+n^2)+sqrt(p^2+q^2)>=sqrt((m^2+p^2)+(n^2+q^2))
Write
f(x,y,z) with regard to Minkowsky's
inequality:
f(x,y,z)=sqrt((x-sin z)^2+(cos z
-2)^2)+sqrt((y-sin z)^2+(cos z -3)^2)
No comments:
Post a Comment