First notice that
`
(1+cosx+sinx)^2=cos^2x+2cosxsinx+2cosx+sin^2x+2sinx+
1`
`=cos^2x+sin^2x+2cosxsinx+2cosx+2sinx+1=1+2cosxsinx+2cosx+2sinx+1
`
`=2(1+cosxsinx+sinx+cosx)=2(1+cosx)(1+sinx)
`
Now we multiply
`(sinx(sinx+1))/(1+sinx+cosx)*(1+sinx+cosx)/(1+sinx+cosx)`
We
get
`sinx(1+sinx)(1+sinx+cosx)/(1+sinx+cosx)^2`
=sinx(1+sinx)
`(1+sinx+cosx)/(2(1+cosx)(1+sinx))`
`=sinx(1+sinx+cosx)/(2(1+cosx))`
`=sinx(1+cosx)/(2(1+cosx))+sin^2x/(2(1+cosx))`
`=1/2sinx+(1-cos^2x)/(2(1+cosx))`
`=1/2sinx+((1+cosx)(1-cosx))/(2(1+cosx))`
`=1/2sinx+(1-cosx)/2`
`=1/2sinx+1/2-1/2cosx
`
The antiderivative of `1/2sinx+1/2-1/2cosx`
is
`-1/2cosx+1/2x-1/2sinx`
So our answer
is
`1/2x-1/2cosx-1/2sinx+C`
`int_0^(pi/2)
(sin^2x+sinx)/(1+cosx+sinx)dx`
`=1/2(pi/2)-1/2cospi/2-1/2sinpi/2
- (1/2(0) - 1/2cos0-1/2sin0)`
`=pi/4 - 1/2(0) - 1/2(1) - (0
- 1/2(1) - 1/2(0))`
`= pi/4 - 1/2 + 1/2 = pi/4` Which is
our answer
No comments:
Post a Comment