Tuesday, May 19, 2015

Prove the trignometric identity: cos3A=cosA(2cos2A-1)

We have to show that cos 3A = (cos A)(2cos 2A -
1)


cos 3A = cos(A +
2A)


=> (cos A)(cos 2A) - (sin A)(sin
2A)


sin 2A = 2*sin A*cos
A


=> (cos A)(cos 2A) - (sin A)(2*sin A*cos
A)


=> (cos A)(cos 2A) - 2(sin A)^2*cos
A


use cos 2A = 1 - 2(sin
A)^2


or -2(sin A)^2 = cos 2A -
1


=> (cos A)(cos 2A) + cos A(cos 2A -
1)


=> (cos A)(cos 2A) + cos A*cos 2A - cos
A


=> (cos A)[cos 2A + cos 2A -
1]


=> cos A(2cos 2A -
1)


This proves that cos 3A = (cos A)(2cos 2A
- 1)

No comments:

Post a Comment

Film: 'Crocodile Dundee' directed by Peter FaimanHow are stereotypical roles upheld and challenged?

One of the stereotypes that is both upheld and challenged is the role of the damsel in distress. Sue is supposed to be the delic...