Solve the equation: `sin x + sqrt(3)cos x=1`
.
`sinx+sqrt(3)cosx=1` Given
equation
`sin^2x+2sqrt(3)sinxcosx+3cos^2x=1` Square both
sides
`sin^2x+cos^2x+2sqrt(3)sinxcosx+2cos^2x=1`
`1+2sqrt(3)sinxcosx+2cos^2x=1`
Pythagorean identity
`2sqrt(3)sinxcosx=-2cos^2x` Subtract
from both sides
`sqrt(3)sinx=-cosx` Divide by `2cosx`
;`cosx!=0`
`tanx=-1/sqrt(3)`
Here
`x=(5pi)/6 +- kpi` with `k in ZZ` . However, squaring both sides introduced an
extraneous solution. `(5pi)/6` does not work.
Thus the
solution is `x=(11pi)/6 +- 2kpi` ;`k in ZZ`
No comments:
Post a Comment