2cos(6x) + 3sin(3x)= 3
First,
we know that:
cos2x = 2sin^2 x -
1
==> cos6x = 1-2sin^2
3x
Now we will substitute into the
equation.
==> 2(1-2sin^2 3x) + 4sin3x =
3
==> 2 - 4sin^2 3x + 4sin3x -3 =
0
==> -4sin62 3x + 4sin3x -1 =
0
Multiply by -1:
==>
4sin^2 3x - 4sin3x +1 = 0
Now we will
factor:
==> (2sin3x -1)^2 =
0
==> (2sin3x -1)=
0
==> sin3x =
1/2
==> 3x = pi/6+2npi , 5pi/6+2npi (n= 0, 1, 2,
3...)
==> x = pi/18 ,
5pi/18
==> x = { pi/18+2npi ,
5pi/18+2npi}
No comments:
Post a Comment