Let cos^-1(6x) = arccos
6x
sin(2cos^(-1)(6x)) = sin(2arccos
(6x))
We'll use the following
identity:
sin (2alpha) = 2sin
(alpha)*cos(alpha)
We'll put alpha = arccos
6x
sin(2arccos (6x)) = 2sin (arccos 6x)*cos(arccos
6x)
But sin(arccos alpha) = sqrt(1 - alpha^2) and
cos(arccos alpha) = alpha
sin (arccos 6x) = sqrt(1 -
36x^2)
cos (arccos 6x) =
6x
sin(2arccos (6x)) = 2*6x*sqrt(1 -
36x^2)
sin(2arccos (6x)) = 12xsqrt(1 -
36x^2)
Therefore, the requested value is
sin(2arccos (6x)) = 12xsqrt(1 - 36x^2).
No comments:
Post a Comment