Put sqrt3+i=t => z^5=t =>
z=(t)^(1/5)
Use polar form for
t:
t = r(cos theta+i sin
theta)
r=sqrt((sqrt3)^2+1^2) => r=sqrt4 =>
r=2
Use the formula to express theta: tan theta=coefficient
of i/number alone= imaginary part of complex number/real part of complex
number
tan theta=1/sqrt3 => theta=30 degrees or pi/6
radians
t=2(cos(pi/6)+isin(pi/6))
z=(2)^(1/5)*(cos(pi/6)+isin(pi/6))^(1/5)
Use
De Moivre's
theorem:
z=(2)^(1/5)*(cos(pi/6+2npi)/5+isin(pi/6+2npi)/5)
Answer:
put n=0=>z=(2)^(1/5)*(cos(pi/30)+isin(pi/30))
put
n=1=>z=(2)^(1/5)*(cos(13pi/30)+isin(13pi/30))
put
n=2=>z=(2)^(1/5)*(cos(25pi/30)+isin(25pi/30))
put
n=3=>z=(2)^(1/5)*(cos(37pi/30)+isin(37pi/30))
put
n=4=>z=(2)^(1/5)*(cos(49pi/30)+isin(49pi/30))
No comments:
Post a Comment