`csecA - sinA= x^3
`
`==> 1/sinA - sinA =
x^3`
`==> (1-sin^2 A)/sinA =
x^3`
`==> (cos^2 A)/sinA = x^3
`
`==> x=
((cos^2A)/sinA)^(1/3)...............(1)`
`secA - cosA =
y^3`
`==> 1/cosA - cosA =
y^3`
`==> (1-cos^2 A)/cosA =
y^3`
`==> (sin^2 A)/cosA =
y^3`
`==> y= ((sin^2
A)/cosA)^(1/3)......................(2)`
Now we will
substitute into the equations:
`(x^2 y^2)(x^2+y^2) =
1`
`((cos^2 A)/sinA)^(2/3) ((sin^2 A)/cosA)^(2/3) (((cos^2
A)/sinA)^(2/3) + ((sin^2 A)/cosA)^(2/3)) = 1`
`((cosA
sinA)^(4/3) )/ (sinA cosA)^(2/3) (((cos^(4/3) A)(cos^ (2/3) A)+(sin^(4/3) A) (sin^(2/3)
A))/(sinA cosA)^(2/3))= 1`
`==> (cosA sinA)^(2/3)(((
cos^2 A) + (sin^2 A))/ (sinA cosA)^(2/3))= 1`
Reduce
similar terms.
==> `cos^2 A + sin^2 A =
1`
`==> 1 = 1`
``Then,
we have proved that if `secA -cosx = y^3 ` and `csecA-sinA= x^3 ` Then, `(x^2 y^2)
(x^2 +y^2) =
1`
``
``
``
No comments:
Post a Comment