Tuesday, August 4, 2015

give the integral formula for the length of the curve sinx=e^y from x=pie/4 to x=pie/2

Curve length from a to b `= int_a^bsqrt(1+(dy/dx)^2)dx` `
`


First find dy/dx where
`sinx=e^y`


`cos(x)dx=e^y
dy`


`dy/dx = cos(x)/e^y = cos(x)/sin(x) =
cot(x)`


Curve length `= int_(pi/4)^(pi/2)
sqrt(1+(cot(x))^2) dx`


Since `1+cot^2(x)=csc^2(x)` ,
`sqrt(1+cot^2(x))=sqrt(csc^2(x))=csc(x)`


`=int_(pi/4)^(pi/2)
csc(x) dx=int_(pi/4)^(pi/2) 1/sin(x) dx `


We can
integrate


`int(1/sin(x) dx)=int(sin(x)/(sin^2(x)))
dx=int(sin(x)/(1-cos^2(x))) dx`


Using `u=cos(x)`
`du=-sin(x) dx`


`int sin(x)/(1-cos^2(x))dx=int
-(du)/(1-u^2)`


Using partial
fractions


1/(1-u^2)=A/(1-u)+B(1+u) 
gives


A(1+u)+B(1-u) = 1   A=1/2, 
B=1/2


And


`int
(du)/(1-u^2)=int 1/2(1/(1-u))+1/2(1/(1+u)) du=1/2(-ln(1-u)+ln(1+u))+C
`



`=1/2ln((1+u)/(1-u))+C
`


Substituting back in we
get


`int csc(x) dx =
-1/2ln((1+cos(x))/(1-cos(x)))+C=1/2ln((1-cos(x))/(1+cos(x)))+C`


So
finally


Length`=int_(pi/4)^(pi/2) csc(x) dx = 1/2
ln((1-cosx)/(1+cos(x)))|_(pi/4)^(pi/2)`


=`1/2(ln((1-0)/(1+0)))-1/2ln((1-sqrt(2)/2)/(1+sqrt(2)/2))=1/2ln(1)+1/2ln((1+sqrt(2)/2)/(1-sqrt(2)/2))`


`=1/2(0)+1/2ln((1+sqrt(2)+1/2)/(1-1/2))`


`=1/2(ln(3/2-sqrt(2)/(1/2))=1/2(ln(3-2sqrt(2))`


So
our answer is `1/2ln(3-2sqrt(2))~~0.8814`

No comments:

Post a Comment

Film: 'Crocodile Dundee' directed by Peter FaimanHow are stereotypical roles upheld and challenged?

One of the stereotypes that is both upheld and challenged is the role of the damsel in distress. Sue is supposed to be the delic...