Curve length from a to b
First find dy/dx where
dy
cot(x)
Curve length
sqrt(1+(cot(x))^2) dx
Since ,
csc(x) dx=int_(pi/4)^(pi/2) 1/sin(x) dx
We can
integrate
dx=int(sin(x)/(1-cos^2(x))) dx
Using
-(du)/(1-u^2)
Using partial
fractions
1/(1-u^2)=A/(1-u)+B(1+u)
gives
A(1+u)+B(1-u) = 1 A=1/2,
B=1/2
And
(du)/(1-u^2)=int 1/2(1/(1-u))+1/2(1/(1+u)) du=1/2(-ln(1-u)+ln(1+u))+C
Substituting back in we
get
-1/2ln((1+cos(x))/(1-cos(x)))+C=1/2ln((1-cos(x))/(1+cos(x)))+C
So
finally
Length
ln((1-cosx)/(1+cos(x)))|_(pi/4)^(pi/2)
=
So
our answer is
No comments:
Post a Comment