You need to remember the formula `tan a + tan b =
            sin(a+b)/(cos a*cos b)`
`` `tan20 + tan 40 =
            sin(20+40)/(cos 20*cos 40) = sin 60/(cos 20*cos 40)`
To
            calculate the product found at denominator, you need the help of
            formula:
`2cos a* cos b = cos(a+b) + cos(a-b)
            `
`2cos 20*cos 40 = cos(20+40) +
            cos(20-40)`
`2cos 20*cos 40 = cos 60 +
            cos(-20)`
The function cosine is even => cos(-20) =
            cos 20
`2cos 20*cos 40 =1/2 +
            cos(20)`
`tan20 + tan 40 = 2((sqrt3)/2)/(1/2 +
            cos(20))`
`tan20 + tan 40 = 2((sqrt3))/(1+
            2cos(20))`
`cos 20 = cos2*10 = 2cos^2 10 -
            1`
`tan20 + tan 40 = 2((sqrt3))/(1+2cos^2 10 -
            1)`
Remove opposite
            terms=>
=> `tan20 + tan 40 =
            2((sqrt3))/(2cos^2 10) = (sqrt3)/(cos^2 10)`
Remember that
            `sec 10 = 1/ (cos 10)`
`tan20 + tan 40 = (sqrt3)*sec^2
            (10)`
ANSWER: `tan20 + tan 40 = (sqrt3)*sec^2
            (10)` 
No comments:
Post a Comment