The notation, f(x), pronounced "f of x", represents the
output of a function, f, when the value of x is inputed. For instance, f(x) = x^2-4 has
a value of 0 when x=2, or f(2) = 2^2-4 = 0.
The function in
this question has two facts known about it. f(1)=5, which means the value of f(x) = 5
when x=1. The other fact is:
f(x+y) -f(x) =
axy-2y^2
Substituting a 1 for
x:
f(1+y) - f(1) =
a(1)y-2y^2
Substitute f(1) = 5: f(1+y) - 5 =
ay-2y^2
Add 5 to both sides: f(1+y) =
ay-2y^2+5
Rearrange the terms: f(y+1) =
-2y^2+ay+5
Factor out a -2 on the right: f(y+1) =
-2(y^2-(a/2)y+____)+5
Knowing the blank above needs to be a
1 to get (y+1)^2:
f(y+1) = -2(y+1)^2+5+2 :Compensate for
the -2*1
f(y+1) = -2(y+1)^2 +
7
Therefore, f(x)=-2x^2+7 and
a=-4.
Since (y+1)^2 = y^2 + 2y +1, -a/2 = 2 and
a=-4.
Proof: f(1) = -2(1)^2 + 7 =5
No comments:
Post a Comment